Problem Sheet \#3 (Geometric Properties of Area)

Pb.3.1 The shaded area shown in fig. is bounded by the curve $y_{1}=x^{1 / 3} \& y_{2}=x^{3}$ Determine the y-coordinate of the centroid of this area which ends at $(1,1)$.

Pb.3.2 A thin sheet of metal 600 mm by 1000 mm has its two upper corner $\mathbf{0}$.229) over along the inclined lines AC and DF as shown in fig.. In the regions bounded by the dotted lines the metal thus becomes doubly thick. Determine the y coordinate of the centorid of the folded sheet. (491.3mm)
Pb.3.3 Determine the moment of inertia of a rectangle about an axis through the centorid and parallel to the base.
($\mathrm{bh}^{3} / 12$)
Pb.3.4 Derive the parallel axis theorem for moment of inertia of a plane area.
Pb.3.5 Determine the moment of inertia of a rectangle about an axis coinciding with the base.
$\left(\mathrm{bh}^{3} / 3\right)$
Pb.3.6 Determine the moment of inertia of a triangle about an axis coinciding with the base.
$\left(b^{3} / 12\right)$
Pb.3.7 Determine the moment of inertia of a triangle about an axis through the centorid and parallel to the base.
($\mathrm{bh}^{3} / 36$)
Pb.3.8 A trapezoidal areas has the dimensions indicated in fig. Determine the location of the centroid as well as the moment of inertia about an axis through the centroid and parallel to x - axis. $\left(\mathbf{4 4 . 4 m m}, \mathbf{2 4 . 1 4} * \mathbf{1 0}^{\mathbf{6}} \mathbf{~ m m}{ }^{\mathbf{4}}\right.$)
Pb.3.9 The structural channel section has welded to it a horizontal reinforcing plate as shown in cross section in fig. determine the y- coordinate of the centroid of the composite section.
Pb.3.10 Determine the moment of inertia of a channel type section about a horizontal axis through the centroid. What is the radius of gyration about this same axis?
(231 $\mathrm{in}^{4}, 2.40 \mathrm{in}$)
Pb.3.11 Locate the centroid of the channel type section shown in fig. Determine the moment of inertia of cross sectional area about a horizontal axis through the centroid. $\quad\left(\mathbf{3 8 . 3 3} \mathbf{~ m m}, \mathbf{3 3} * \mathbf{1 0}^{\mathbf{6}} \mathbf{~ m m}^{4}\right.$)

Prepared By:
Muhammad Farooq
Lecturer, Mechanical Engineering Department, UET Lahore (KSK-Campus).

(Pb. 3)

(Pb. 4)

(Pb. 7)

(Pb. 5)

(Pb. 8)

(Pb. 6)

(Pb. 9)

(Pb. 10)

(Pb. 11)

