

University of Engineering and Technology Lahore, KSK campus Department of Mechanical, Mechatronics and Manufacturing Engineering B.SC. Mechanical Engineering course skeleton

Course: ME-231 (Mechanics of Materials-I)	Name of Instructor: Mr. Muhammad Farooq	Session 2011	Semester 3 rd	Duration Sep,2012–Jan,2013
Credit hours:	Part 1 (Theory)	Part 2 (Lab)		
	3	1		

Books and references:

- 1. Mechanics of Materials by F.P.Beer & E.R.Johnstona ha
- 2. Mechanics of Engineering Materials by P.P.Benham & R.J.Crawford
- 3. Mechanics of Solids & Strength of Materials by F.V.Warnock.
- 4. Strength of Materials by William Nash.

Objectives: To comprehend the understanding of mechanics of materials methods that can be used in any industrial setup.

Course coaching method: Class Lectures and Lab sessions

Assessment method: Assignments, Ouizzes, Vivas, Presentations, Group Discussions, Written examinations,

Week	Dort 1 (Theory)	Dart 2 (Lab work)			
vv eek	Part 1 (Theory)	Part 2 (Lab work)			
1	Introduction & Review of Mechanics, Stress Strain Diagram,	Lab introduction, work plan & layout.			
	Mechanical Properties of Materials				
2	Stress concept, types & explanation. Stresses in composite bars.	To draw the load-extension curve of a metallic wire			
	Problem Sheet	and hence to determine the modulus of elasticity of			
3	Design concentration, Factor of safety,	the material of the wire.			
	Selection of appropriate F.O.S. Problem Sheet				
4	Strain concept, types & explanation. Young's modulus, Shear	To find the support reactions and central moment for a			
	modulus,	simply supported continuous beam with the different combination of loadings.			
5	Poisson ratio, Volumetric strain & bulk modulus.	combination of loadings.			
	Problem Sheet				
First Quiz and Assignment-I					
6	Torsion, Assumption & Derivation of torsion formula. Solid & hollow	To investigate the relationship between shear stress and shear strain for rubber and to determine the modulus of rigidity of the material. To measure the Young's modulus by using Four Point			
	shafts, Comparison b/w solid & hollow shafts. Problem Sheet				
7	Compound shafts. Design of transmission shafts. Polar moment of				
iner	inertia. Problem Sheet & Application				
		Bending Test method with deflection of beam			
8	Geometrical Properties of Area, Parallel axis theorem, Perpendicular	apparatus.			
	axis theorem, Problem Sheet	**			
9	Mid Term Examination (written)				
10	Pure Bending, Bending stress, flexure formula for bending, Analysis	To determine the modulus of rigidity of the given			
	of deformation, Section modulus, Problem Sheet & Applications.	material of circular shaft.			
11	Beams, Load, reaction, support—types, applications & explanation,	To determine the central deflection of a simply			
	Relation among load, shear & bending moment. Problems	supported beam loaded by a concentrated load at mid			
	Applications.	point and hence determine the modulus of elasticity of			
12	Shear force (S.F) & bending moment (B.M) diagrams. Problems &	the material of the beam.			
	Applications.				
13	Deflection of beams, Deflection equation of elastic curve, Double	To verify the laws of shearing force and bending			
	integration method, Problem Sheet	moment on a beam.			
	Second Quiz and Assignme				
14	Column. Type of failure of column. Critical load. Long columns by	To determine the central deflection of a fixed ended			
	Euler's formula. Limitations of Euler's formula. Problems &	beam loaded at mid-span by Concentrated loads and to			
	Applications	compare with theoretical value.			
15	Energy Theorem, Strain Energy for Normal & Shear stress, Strain	Group Discussions. Industrial Applications case studies.			
	Energy in Torsion & bending. Applications & Problem Sheet.				
16	Case Studies, Subject Review				
17	Final Examination (written)				
1 /	r mai Examination (written)				