Chapter 7

Centroids, Moments of Inertia, and Products of
Inertia of Plane Areas

FIRST MOMENT OF AN ELEMENT OF AREA

The first moment of an element of area about any axis in the plane of the area is given by the
product of the area of the element and the perpendicular distance between the element and the axis.
For example. in Fig. 7-1 the first moment dQ, of the element da about the x-axis is given by

dQ, =yda
About the y-axis the first moment is
dQ, = xda

For applications, see Problems 7.2 and 7.12.
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FIRST MOMENT OF A FINITE AREA

The first moment of a finite area about any axis in the plane of the area is given by the summation
of the first moments about that same axis of all the elements of area contained in the finite area. This
is frequently evaluated by means of an integral. If the first moment of the finite area is denoted by
Q.. then

Q.= deQ..

For applications, see Problems 7.1 and 7.3,

CENTROID OF AN AREA
The centroid of an area is defined by the equations

Xda yda
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where A denotes the area. For a plane area composed of N subareas A, each of whose centroidal
coordinates X; and y; are known, the integral is replaced by a summation

N

> %A,

= (7.1)
YA,
y =" (7.2)
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For applications see Problems 7.2, 7.3, and 7.12.

The centroid of an area is the point at which the area might be considered to be concentrated and
still leave unchanged the first moment of the area about any axis. For example, a thin metal plate will
balance in a horizontal plane if it is supported at a point directly under its center of gravity.

The centroids of a few areas are obvious. In a symmetrical figure such as a circle or square, the
centroid coincides with the geometric center of the figure.

It is common practice to denote a centroid distance by a bar over the coordinate distance. Thus

¥ indicates the x-coordinate of the centroid,

SECOND MOMENT, OR MOMENT OF INERTIA, OF AN ELEMENT OF AREA

The second moment, or moment of inertia, of an element of area about any axis in the plane of the area
is given by the product of the area of the element and the square of the perpendicular distance between
the element and the axis. In Fig. 7-1, the moment of inertia d/, of the element about the x-axis is

dl, = v’da
About the y-axis the moment of inertia is
dl, = v*da

SECOND MOMENT, OR MOMENT OF INERTIA, OF A FINITE AREA

The second moment, or moment of inertia, of a finite area about any axis in the plane of the area
is given by the summation of the moments of inertia about that same axis of all of the elements of area
contained in the finite area. This, too, is frequently found by means of an integral. If the moment of
inertia of the finite area about the x-axis is denoted by /,, then we have

I = f dl, = f yida (7.3)

1= f dl, = f xda (7.4)

For a plane area composed of N subareas A, each of whose moment of inertia is known about the x-

and y-axes, the integral is replaced by a summation
N

L=>), L= ),
i=1

For applications, see Problems 7.4, 7.6, 7.7, 7.8, 7.9, and 7.10.
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UNITS

The units of moment of inertia are the fourth power of a length, in* or m®.

PARALLEL-AXIS THEOREM FOR MOMENT OF INERTIA OF A FINITE AREA

The parallel-axis theorem for moment of inertia of a finite area states that the moment of inertia
of an area about any axis is equal to the moment of inertia about a parallel axis through the centroid
of the area plus the product of the area and the square of the perpendicular distance between the two
axes. For the area shown in Fig. 7-2, the axes x; and y¢ pass through the centroid of the plane area.
The x- and y-axes are parallel axes located at distances x, and y, from the centroidal axes. Let A denote
the area of the figure, [, and I, the moments of inertia about the axes through the centroid, and Z,
and I, the moments of inertia about the x- and y-axes. Then we have

I =1 +A() (7.5)
I}' = l'[}’c.' + /4(":1}2 (76)
This relation is derived in Problem 7.5. For applications, see Problems 7.6, 7.8, 7.11, and 7.12.
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Fig. 7-2

RADIUS OF GYRATION

If the moment of inertia of an area A about the x-axis is denoted by 7, then the radius of gyration
r, is defined by

I,

= = 7.7
n=Ja (7.7
Similarly, the radius of gyration with respect to the y-axis is given by
1,
r, = \ ) (7.8)

Since [ is in units of length to the fourth power, and A is in units of length to the second power,
then the radius of gyration has the units of length, say in or m. It is frequently useful for comparative
purposes but has no physical significance. See Problems 7.10 and 7.11.
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PRODUCT OF INERTIA OF AN ELEMENT OF AREA

The product of inertia of an element of area with respect to the x- and y-axes in the plane of the
area is given by

dl,, = xy da

where x and y are coordinates of the elemental area as shown in Fig. 7-1.

PRODUCT OF INERTIA OF A FINITE AREA

The product of inertia of a finite area with respect to the x- and y-axes in the plane of the area is
given by the summation of the products of inertia about those same axes of all elements of area
contained within the finite area. Thus

I, = jxy da (7.9)
Fram thic it e avidant that f mav he naocitive neoative aor zero r a nlane area comnoced of N
L Awriil lllla, L ) ‘l'.“\-’ll‘i LEREAR xy a4 u: LA H‘J\Jl‘- Ny E \IEH‘I"‘\, o Nl WFe B WA R l—' =13 A W R LS ll,mﬂ‘-r!-l A
subareas A, each of whose product of inertia is known with respect to specified x- and y-axes, the

For applications see Problems 7.13 and 7.15.

PARALLEL-AXIS THEOREM FOR PRODUCT OF INERTIA OF A FINITE AREA

The parallel-axis theorem for product of inertia of a finite area states that the product of inertia
of an area with respect to the x- and y-axes is equal to the product of inertia about a set of paraliel
axes passing through the centroid of the area plus the product of the area and the two perpendicular

distances from the centroid to the x- qnd v-axes. For the area chown in F"o 7.2, the axes x; and Y pass

LSRR} L 3 Bl WrinaiiEng s LA sl SaLS N

through the centroid of the plane area. The x- and y-axes are parallel axes located at distances x; and
y, from the centroidal axes. Let A represent the area of the figure and I, ,  be the product of inertia
about the axes through the centroid. Then we have

Ix_v = Lp,y(;"'Axl)’I (7'II)
This relation is derived in Problem 7.14. For applications see Problems 7.15 and 7.16.

PRINCIPAL MOMENTS OF INERTIA
At any point in the plane of an area there exist two perpendicular axes about which the moments

of inertia of the area are maximum and minimum for that point. These maximum and minimum values
of moment of inertia are termed principal moments of inertia and are given by

o= (252) + (B35 + @0 z12)

o= (252) - (552 + @ (713)

These expressions are derived in Problem 7.17. For application, see Problem 7.18.
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PRINCIPAL AXES

The pair of perpendicular axes through a selected point about which the moments of inertia
of a plane area are maximum and minimum are termed principal axes. For application. see
Problem 7.16.

The product of inertia vanishes if the axes are principal axes. Also, from the integral defining
product of inertia of a finite area, it is evident that if either the x-axis, or the y-axis, or both, are axes
of symmetry, the product of inertia vanishes. Thus, axes of symmetry are principal axes.
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INFORMATION FROM STATICS

Most texts on statics develop the properties of plane cross-sectional areas shown in Fig. 7-3 that
will be needed in the present chapter. Those areas include (@) the rectangle. (b) the triangle, (¢) the
circle, (d) the semicircle, () the quadrant of a circle, and (e) the sector of a circle.

Solved Problems

7.1.  The shaded area shown in Fig. 7-4 is bounded by the curves

»i =V
and y2=x

Determine the y-coordinate of the centroid of this area which ends at (1.1).
We select an element that is horizontal (thus all points in this element have the same *y") and

/-

(xi ¥ ) o EEIRH dy

Fig. 7-4

extending from curve y, to y; as shown in Fig. 7-4. The height of the element is dyv. From the definition
of the location of the centroid,
I yda

y= P

da = (x; — x;)dy
in which case we have

1
I (2 = x2) () ()
(4]

y= 1
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Although the integrations involved in this problem are simple, for more complex problems one should
resort to computers. A number of symbolic operations are available on proprietary software that permit
easy and rapid treatments of such computations.

7.2. A circular cross section has a sector having a central angle 26 removed as shown in Fig. 7-5.
Locate the y-coordinate of the centroid of the shaded area.

g0

Fig. 7-5 Fig. 7-6

From the summary at the beginning of this chapter, we have for a sector of central angle 26 the area
and centroid given by 6R? and 2Rsin 6/36, respectively (see Fig. 7-6). The area of the entire circle having
its centroid at its geometric center is also given in that summary.

By definition the y-coordinate of the centroid of the shaded area in Fig. 7-4 is given by

di Zyd
5= I_{;_a o %
Here we consider the shaded area to be composed of the three components consisting of the lower
semicircle (1), the upper semicircle (Z), and the sector that has been removed (). Thus the net shaded area

is represented as shown in Fig. 7-7.

Fig. 7-7

&

Using these components in the finite surnmation (7.1), we have

® @ ©)

m 4R) 7 ,(4R) Z(ZR_ )
= 4+ = — | = -
__2R( 3n) 28\ 3a) TR (36008
Y 7R — 6R

__%(Rsinﬁ)

(m—6)
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7.3. A thin sheet of metal 600 mm by 1000 mm has its two upper corners folded over along the
inclined lines AC and DF as shown in Fig. 7-8. In the regions bounded by the dotted lines, the
metal thus becomes doubly thick. Determine the y-coordinate of the centroid of the folded
sheet.

.
250 mm
B (& Q! E
- 1
/ I \. li”“
T el
10030 mm
4
300 mm 300 mm
Fig. 7-8
By definition, the y-coordinate of the centroid is
- ' dl Ty A
y= '[':4 2 o —; :
where the numerator in each expression represents the first moment of the area about the x-axis. In the
numerical evaluation, the triangles ABC and DEF have been removed but replaced by triangles ACG and
DFH accounting for the double thickness. Thus we have
NBCA LAGC
. (600) (1000) (500) — 2{3(250) (250) [1000 — 5]} + 2{}(250) (250) [750 + )}
’ (600) (1000)
= 491.3mm
74. Determine the moment of inertia of a rectangle about an axis through the centroid and parallel
to the base.
v
|
a Z
Z
H— 5
A
2
3
Fig. 779

Let us introduce the coordinate system shown in Fig. 7-9. The moment of inertia I, about the x-axis
passing through the centroid is given by I, = I y? da. For convenience it is logical to select an element

such that y is constant for all points in the element. The shaded area shown has this characteristic.
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7.5.

7.6.
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This quantity has the dimension of a length to the fourth power, perhaps in* or m*.

Derive the parallel-axis theorem for moments of inertia of a plane area.

Fig. 7-10

Let us consider the plane area A shown in Fig. 7-10. The axes x; and y.; pass through its centroid.
whose location is presumed to be known. The axes x and y arc located at known distances v, and x,.
respectively, from the axes through the centroid.

For the element of arca da the moment of inertia about the x-axis is given by

dl, = (v, +y'Yda

For the entire area A the moment of inertia about the x-axis is

I = Idl‘ = f(y. +y'Yda= I(y,}*’da + 2f,v|y‘ da + J’ (v'Y da

The first integral on the right is cqual to yi f da = vi A because y, is a constant. The second intcgral on
r
the right is equal to 2y, J v'da = 2y,(0) = 0 because the axis from which y* is measured passes through

the centroid of the area. The third integral on the right is equal to /. . i.c.. the moment of inertia of the
arca about the horizontal axis through the centroid. Thus

l‘ = !.h + A{y!)z
A similar consideration in the other direction would show that
1, =1, +Ax)

This is the parallel-axis thcorem for plane areas. It is to be noted that one of the axes involved in each
aanatinn mnet nace thranah tha rnnlrnu‘l nfthe arna In worde this mav he gtated ag fallnwe: Tha momeont
\-\-IU(-III‘J‘I L 1Y yum L) II‘JUEII Bl o lILAWSELE WL LA N %ol A1 WYL AR, LILEOD lllu"' L LWL 0 BLRELI YT . A B BRI R
of inertia of an area with reference 1o an axis not through the centroid of the area is equal to the moment
of inertia about a parallel axis through the centroid of the arca plus the product of the same arca and the

square of the distance between the two axes.
The moment of inertia always has a positive value, with a minimum value for axes through the centroid
of the area in question.

Find the moment of inertia of a rectangle about an axis coinciding with the base.
The coordinate system shown in Fig. 7-11 is convenicnt. By definition the moment of inertia about the

x-axis is given by I, = J y*da. For the element shown y is constant for all points in the element. Hence

2 Dl
I,=1| y'bdy=5b = — bl
w u 3
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This solution could also have been obtained by applying the parallel-axis theorem to the result
obtained in Problem 7-4. This states that the moment of inertia about the base is equal to the moment of
incrtia about the horizontal axis through the centroid plus the product of the area and the squarce of the
distance between these two axes. Thus

Fig. 7-11

2

_ P P
I.=1, + A lzbh +bh(2) 3bh

7.7. Determine the moment of inertia of a triangle about an axis coinciding with the base.

v T
8
fo |
AN
b — -
Fig. 7-12

Let us introduce the coordinate system shown in Fig. 7-12. The moment of incrtia about the horizontal

base 1s
1= J Y da

For the shaded element shown the quantity y is constant for all points in the element. Thus

h
I = f y'sdy
10

By similar triangles, s/b = (h — y)/h, so that

kb b g g |
L= [ gt nay =0 [ iy [ ya | = o
Yk nt" ) A 12

7.8. Determine the moment of inertia of a triangle about an axis through the centroid and parallel
to the base.
Let the x-axis pass through the centroid and 1ake the x-axis to coincide with the base as shown in
Fig. 7-13.
From Fig. 7-3(b) the x-axis is located a distance of /3 above the base. Also, the paralicl-axis theorem
tells us that

"x = L‘; + A(yl)2
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But /, was determined in Problem 7.7, and A and y, (= A/3) are known. Hence we may solve for the desired
unknown, /, .. Substituting,

2
l—lzbh’ = I,G+lbh(}—!) or [ .= l!.'Jah"

2 3 “ 36
A1

G

m:?l W
[5)

b —d
Fig. 7-13

7.9. Determine the moment of inertia of a circle about a diameter.

ﬁgf 7‘ ld

Let us select the shaded element of area shown in Fig. 7-14, and work with the polar coordinate
system. The radius of the circle is r.

To find I, we have the definition [, = '- vida.

o

But y = psin @ and da = pdédp. Hence

2w pr 2w 1 r
I, = J f psin’ Bpdédp = f sin® Bde[zp‘L
i} (i} 1]

A r2m r
=%I sin28d8=T

(1]

If D denotes the diameter of the circle, then D = 2r and I, = mD*/64. This is half the value of the polar
moment of inertia of a solid circular area (see Problem 5.1).
The moment of inertia of a semicircular area about an axis coinciding with its base is
_1=xD* _ =D*
2 64 128

I,
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7.10. Determine the moment of inertia about both the x- and y-axes as well as the corresponding radii
of gyration of the plane area shown in Fig. 7-15.

¥
y=64 — x}25

ya

40 mm e s0mm —ol
Fig. 7-15

Let us select the shaded element of width dx and altitude y shown in Fig. 7-15. From Problem 7.6 we
have the moment of inertia of this element about the x-axis as

dl, = 3ok’ = i(dx)y’

Now, we must integrate over all values of x from —40 mm to +40 mm to account for all such elements.

Thus,
l x =i}
L=fdr,=5f v dx
x=-40
2

=4 xZ 3
A ekl
= 3.197 x 10 mm*

The same element may be employed to determine the moment of inertia of the entire area about the
y-axis. By definition we have

dl, = x’da

=40
1= Ia‘], = j X*ydx
x=—40

which becomes

= 1.092 X 10* mm*
T Antnesienn tha sadic ~Af comntine o6 oo Resd ssasammmems: S Geol sl oo el mlea mermeie  Ba I
AV ULRCLININIG LI atll urL sylnu I, 1L Id RIIOSL lLbL'aad.l)" u nu. N Ica Wuer nc cuive. 1L Is
given by

from which we have

1 [3.197 X 10° mm*
VNV R%nmm 30.6 mm
' 4

=
r,=
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7.11. Two channel sections are attached to a cover plate 16 in long by } in thick, as indicated in Fig.

7-16. Locate the centroid of the cross section and determine the moment of inertia and radius
of gyration about an axis parallel to the x-axis and passing through the centroid.

26in
| 14
025in —sfe—  05in
. -
1
05in
0.25in
‘C
xl
Axis of
symmetry
10 tn
L 1

Id— 260 - 025 =235

Fig. 7-16 Fig. 7-17

Let us first consider a single channel section, as shown in Fig. 7-17. The area of the cross section is
A = 2(3)(2.60 — 0.25) + 10(}) = 4.85in°

and from Prohlem 7.4 together with the narallel-axis theorem we have the moment of inertia of the channel

aara ATV Rl v AR anad B4 PSR i TaALS 2 Loaave AFaiiEidioans P panniaada W

about an axis parallel 1o the x-axis and passing through l'lll'Old of the channel (the x,-axis) as
I = () (10) + 2{5(2.35) ()" + (235) () (S — 1))
= 73.90in*

where term (1) corresponds to the moment of inertia of the vertical rectangle about the x,-axis, term (2)
corresponds to the moment of inertia of one horizontal rectangle about the x,-axis through the centroid
of the horizontal rectangle, and term (3) indicatcs the transfer term from the parallel axis theorem to pass
from axis x, to axis x,.

Now, we may write the moment of inertia of the entirc assembly about the x-axis by applying the resuit
of Problem 7.6 to the cover plate and applying the parallel axis theorem to [, to obtain

I, = Y(16) (})* + 2{73.87 + 485(5.5)} = 441 8in*
The centroid of the cross section of the entire assembly is determined from the definition
_ _Zyda
Y= 7a
©) @

_ 16 G) + 2[(4.89) (5.5)]
(16) &) + 2[4.85]

where the terms represented by (3) correspond to the horizontal cover plate and the terms numbered (@
correspond to the channels.

=313
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Now that we have located the centroidal axis x; of the assembly, we may employ the parallel-axis
theorem to transfer from the x- to the xg-axis:

I, =1, +AQ)y
441.8in* = 1,_+ (17.76in°) (3.13 in)’
1., = 26848 in*
The corresponding radius of gyration is
P = Lo po8as 3.89in
. A N1176 7

7.12. A plane section is in the form of an equilateral triangle, 200 mm on a side. From it is removed
another equilateral triangle in such a manner that the width of the remaining section is 30 mm
measured perpendicular to the sides of both equilateral triangles. as shown in Fig. 7-18.
Determine the location of the centroid of the remaining (shaded) area as well as the moment
of inertia about the axis through the centroid and parallel to the x-axis.

J 200 mm I

Fig. 7-18

It is necessary to determing the sizc of the inner triangle that has been removed. From the geometry
of Fig. 7-18 it is evident that BE = 60 mm because of the 30° angle between BE and BC. Thus the altitude
k of the “removed™ triangle DEF is

h = 200c0s30 — 30 — 60 = 83.21 mm
The length of a side of this triangle is

21
DF = 33% = 96.08 mm

From symmetry the centroid lies on the y-axis and its location is found by the definition

'd 3 ydA
[yda or y
A A

y=

where the numerator represents the first moment of the area about the x-axis. Using the known location
of the centroid of a triangle and its area, as given in the summary at the beginning of this chapter,
we have

_ 3200) (200 cos 30) (3% cos 30) - 3(96.08) (83.21) {30 + 83.21/3)
a 1(200) (200 cos 30) — }(96.08) (83.21)

= 5772 mm
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To determine the moment of inertia of the shaded area in Fig. 7-18, we begin by finding the moment
of inertia of that area about the x-axis. This is accomplished by taking the moment of inertia of the outer
triangle ABC about the x-axis using the result of Problem 7.7, then subtracting the moment of inertia of
the inner triangle D EF about that same axis. This latter value is calculated by first determining the moment
of inertia of DEF about an axis through the centroid of DEF using the result of Problem 7.8, then
employing the parallel-axis theorem to transfer that value to the x-axis. Thus,

I, = $5(200) (200 cos 30)° — [3(96.08) (83.21)* + 5(96.08) (83.21) [30 + 83.21/3]}
= 71.74 X 10° mm*
Utilizing the parallel-axis theorem, we have
IL=1L,+AQ)
71.74 % 10° mm* = ,,, + {3(200) (200 cos 30) — 4(96.08) (83.21)} (57.72 mm)?
I, =27.35x 10° mm*

7.13. Determine the product of inertia of a rectangle with respect to the x- and y-axes indicated in
Fig. 7-19.

-1

7
fe
|

|
L

—b—

Fig. 7-19

r
We employ the definition /,, = J xyda and consider the shaded element shown. Integrating,
v=h frx=h y=h xz ]
Ly = J I xydxdy = J [3] ydy
y=0 Jx=0 y=0 o
b?

29h p2p2

y b*h
= — | — = — I
2[2}0 4 D

7.14. Derive the parallel-axis theorem for product of inertia of a plane area.

In Fig. 7-20. the axes x; and y; pass through the centroid of the area A. The axes x and y are located
the known distances y, and x,, respectively, from the axes through the centroid.
For the element of area da the product of inertia with respect to the x- and y-axes is given by

dl,, = (x, +x") (O +y)dxdy

For the entire area the product of inertia with respect to the x- and y-axes becomes

I, - J ., = I J (5 + ) O ) dxdy

=Jj’x.y,dxdy-i-Ijx'yldxdy+JI1,y'dxdy+JIx'y’dxdy
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7.15.

Fig. 7-20

The first integral on the right side equals x, y; A since x, and y, are constants. The second and third integrals
vanish because x" and y’ are measured from the axes through the centroid of the area A. The fourth integral
is equal to /,,,,, that is, the product of inertia of the area with respect to axes through its centroid and
paralle] to the x- and y-axes. Thus. we have

J"Inr}=xl.}"1A"""In:gy;_-, (1)

This is the parallel-axis theorem for product of inertia of a plane area. It is to be noted that the xs- and
yc-axes must pass through the centroid of the area. Also, x, and y, are positive only when the x- and
y-coordinates have the location relative to the xs-y system indicated in Fig. 7-20. Thus, care must be taken
with regard to the algebraic signs of x, and y,.

Determine /,, for the angle section indicated in Fig. 7-21.

The area may be divided into the component rectangles as shown. For rectangle 1 we have, from (7)
of Problem 7.13,

()1 = 2(10)? (125)% = 39 % 10* mm*

For rectangle 2 we employ (1) of Problem 7.14. The product of inertia of rectangle 2 about axes through
its centroid and parallel to the x- and y-axes vanishes because these are axes of symmetry. Thus, for
rectangle 2, I, = 0. The parallel-axis theorem of Problem 7.14 thus becomes

(I.y)2 = (42.5)(5) (65) (10) = 13.8 X 10 mm*
For the entire angle section we thus have

1y = 39x10° + 13.8 x 10" = 52.8 x 10° mm*

3 fl‘ 11»'0

o .
L 10
10 rmr_J-I mm
























