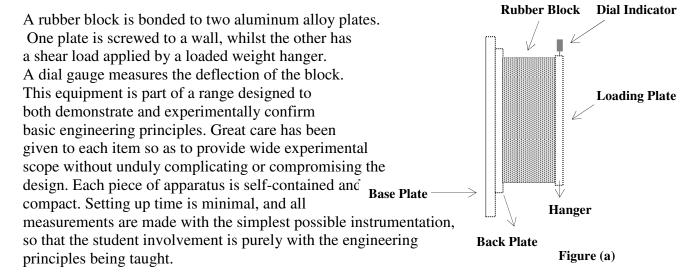
Lab Manual

Mechanics of Materials-I


EXPERIMENT NO. 2

Objective:

To investigate the relationship between shear stress and shear strain for rubber and to determine the modulus of rigidity of the material.

Apparatus:

Modulus of rigidity of rubber apparatus, Hangers and Weights, Steel rule, Dial Indicator

Summary of Theory:

The force which tends to cut off or parts off one portion of the component from the other is called shear force. Stresses produced on the area under shear, due to shearing forces, are called shearing stresses. Shear stress is denoted by τ .

Mathematically,

Shearing stress = Shearing force/ Area under shear ----- (i)
Units of shear stress: Newton per square meter (N/m^2) = Pascal (Pa) or pounds per square inch (psi)

Shearing strain is the angle of distortion. It can be represented by γ . ----- (ii)

The constant of proportionality relating shear stress and shear strain is modulus of rigidity. It is represented by G.

Mathematically,

Units of G: Newton per square meter (N/m^2) = Pascal (Pa) or pounds per square inch (psi)

Let us consider the deformation of a rectangular block where the forces acting on the block are known to be shearing stress as shown in the figure (b).

The change of angle at the corner of an originally rectangular element is defined as the shear strain.

Department of Mechanical, Mechatronics & Manufacturing Engineering, UET Lahore (KSK-Campus).

Let,

 P_s = Shearing load or force acting on the body

l =Length of the body

A = Area under shear = l x t

 τ = Shear stress induced in the body

G = Modulus of rigidity for the material of the body

 γ = Shear strain produced

 δs = Deformation of the body

From the figure

$$Cc = Dd = \delta s = Shear Deformation$$

 $tan \gamma = Dd/BD = \delta s/w$

For smaller angles

 $tan \gamma = \gamma = Shear strain = \delta s/w$

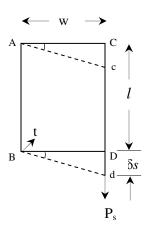
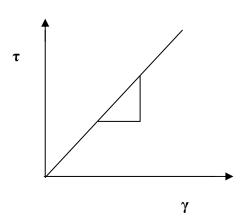


Figure (b): Distortion of a rectangular block


From the information in (i), (ii), and (iii)

$$G = \tau / \gamma$$

or

$$G = (P_s / \delta s) (w/l.t)$$

Shear Stress-Shear Strain Curve:

Procedure:

- 1. Set the dial indicator so that its anvil rests on the top of the loading plate.
- 2. Set the dial indicator at zero.
- 3. With the hanger in position apply a load to the hanger and read the vertical displacement of the loading plate relative to the fixing plate from the dial indicator (δs).
- 4. Repeat the experiment for increasing load and record the vertical displacement of the loading plate in each case.
- 5. Unload and note the corresponding readings with the load decreasing.
- 6. Calculate the "Modulus of Rigidity (G)" of the rubber material.

Observations and Calculations:

<u>Department of Mechanical, Mechatronics & Manufacturing Engineering, UET Lahore (KSK-Campus).</u>

Length of rubber block (l) = ____ mm Width of rubber block (w) = ____ mm Thickness of rubber block (t) = ____ mm

Least count of dial indicator = ____ mm

No. of Obs.	Load Ps (N)	Shear Deformation-δs (mm)			Shear Stress	Shear Strain	Modulus of Rigidity	
		Loading	Unloading	Average	$\tau = P_s/l .t$	$\gamma = \delta s /_{\rm w}$	$G = \tau/\gamma$	G (N/m ²)
					(N/m ²)		(N/m ²)	From Graph
1.								
2.								
3.								
4.								
5.								
6.								
7.								

Name:	Reg. #
Date:	

The laboratory report should contain the following:

- 1. Plot of curve between shear stress- τ (Y-axis) and shear strain- γ (X-axis). Calculate the slope of the graph.
- 2. Hand calculations showing all results requested in (6) under procedure above.
- 3. A discussion / comments of factors affecting the results of the experiment.
- 4. Practical Applications

Report: