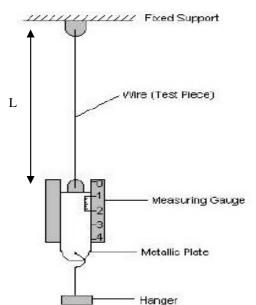


Lab Manual

Mechanics of Materials-I

EXPERIMENT NO. 1

Objective:


To draw the load-extension curve of a metallic wire and hence determine the modulus of elasticity of the material of the wire.

Apparatus:

Young's Modulus of Elasticity apparatus, Hangers and Weights, Meter Rod, Micrometer

The Young's Modulus of Elasticity apparatus consists of a wire attached to a fixed support.

The lower end of the wire is attached to the hanger with the help of a metallic plate. The extension of the wire on loading can be measured from the scale present on metallic plate.

Theory:

Figure (a): Young's Modulus of Elasticity Apparatus Normal stress in a solid body is defined "The internal resistance force per unit area against the applied load or external force." It

is denoted by σ . It can be tensile or compressive. Mathematically,

Stress = Force/Area ----- (i)

Units of stress: Newton per square meter $(N/m^2) = Pascal$ (Pa) or pounds per square inch (psi)

Normal strain in a solid body is defined as: "Change of length per Original Length." It is denoted by the symbol ε .

Mathematically.

Normal Strain = Change in length/Original length ------ (ii) Strain is measured as inch/inch.

By Hooke's law, we know that stress is directly proportional to the strain, whenever a material is loaded within its proportionality limit. It is denoted by E.

Department of Mechanical, Mechatronics & Manufacturing Engineering, <u>UET Lahore (KSK-Campus).</u>

Mathematically,

Stress α Strain (within proportionality limit) ------ (iii)

Units of E: Newton per square meter $(N/m^2) = Pascal$ (Pa) or pounds per square inch (psi)

Consider a body (wire) subjected to a tensile stress as shown in figure (a). Let,

P = Load or force acting on the body

L = Length of the body

A = Cross-sectional area of the body

 σ = Stress induced in the body

E = Modulus of elasticity for the material of the body

or

 ϵ = Strain produced in the body

 δl = Deformation of the body

From (i), (ii), and (iii)

$$E = \sigma/\epsilon$$

$$\mathbf{E} = (\mathbf{p}/\delta l) (\mathbf{L}/\mathbf{A})$$

Р

Load-Extension Curve:

- 1. Put the initial load of 10 N to remove wrinkles in wire.
- 2. Measure length of wire using meter rod.
- 3. Measure diameter of the wire using micrometer.
- 4. Adjust main scale so that zeros of two scales coincide with each other.
- 5. Put a load of 5 or 10 N in the hanger and measure extension.
- 6. Take a set of at least five readings of increasing value of load and then take readings on unloading.
- 7. Check the zeros at no load.
- 8. Calculate the "Young's Modulus of Elasticity (E)" of the material of the Wire.

δl

Department of Mechanical, Mechatronics & Manufacturing Engineering, <u>UET Lahore (KSK-Campus).</u>

Observations and Calculations:

Least Count of the scale of apparatus	=	_ mm
Least Count of micrometer	=	_ mm
Least Count of meter rod	=	mm
Length of wire (L)	=	_mm
Dia of wire (d)	=	_mm
Initial Load	=	N
X-area of wire (A= $\pi d^2/4$)	=	_ mm ²

	Effective	Extension-δ <i>l</i>		Ρ/δί	Modulus of Elasticity		
No. of Load-P Obs.		(mm)			(N/mm)	$\mathbf{E}=(\mathbf{P}/\delta l)(\mathbf{L}/\mathbf{A})$	
	(N)	Loading	Unloading	Average	From Graph	(N/m ²)	
1.							
2.							
3.							
4.							
5.							
6.							
7.							

Name: _____

Reg. #_____

Date:

Report:

The laboratory report should contain the following:

- 1. Plot of curve between Load **P** (Y-axis) and Extension δl (X-axis) as shown in figure (b). Calculate the slope of the graph.
- 2. Hand calculations showing all results in (8) under procedure above.
- 3. A discussion / comments of factors affecting the results of the experiment.
- 4. Practical Applications