Lab Manual

EXPERIMENT NO. 1

Objective:

Determine the modulus of elasticity of the material of the wire.

Apparatus:

Young's Modulus of Elasticity apparatus, Hangers and Weights, Meter Rod, Micrometer

The Young's Modulus of Elasticity apparatus consists of a wire attached to a fixed support.

The lower end of the wire is attached to the hanger with the help of a metallic plate. The extension of the wire on loading can be measured from the scale present on metallic plate.

Theory:

Figure (a): Young's Modulus of Elasticity Apparatus

Normal stress in a solid body is defined "The internal resistance force per unit area against the applied load or external force." It is denoted by σ . It can be tensile or compressive.

Mathematically,

Stress = Force/Area ------ (i)

Units of stress: Newton per square meter $(N/m^2) = Pascal$ (Pa) or pounds per square inch (psi)

Normal strain in a solid body is defined as: "Change of length per Original Length." It is denoted by the symbol ε .

Mathematically,

Normal Strain = Change in length/Original length ------ (ii) Strain is measured as inch/inch. By Hooke's law, we know that stress is directly proportional to the strain, whenever a material is loaded within its proportionality limit. It is denoted by E.

Mathematically,

Stress α Strain (within proportionality limit) ------ (iii)

Units of E: Newton per square meter $(N/m^2) = Pascal$ (Pa) or pounds per square inch (psi)

Consider a body (wire) subjected to a tensile stress as shown in figure (a).

Let,

P = Load or force acting on the body

L = Length of the body

A = Cross-sectional area of the body

 σ = Stress induced in the body

E = Modulus of elasticity for the material of the body

 ε = Strain produced in the body

 δl = Deformation of the body

From (i), (ii), and (iii)

 $\sigma \alpha \varepsilon \\ \sigma = E x \varepsilon$

or

$$E = \sigma/\epsilon$$

E = (p/ δl) (L/A)

Load-Extension Curve:

Figure (b)

Procedure:

- 1. Put the initial load of 10 N to remove wrinkles in wire.
- 2. Measure length of wire using meter rod.
- 3. Measure diameter of the wire using micrometer.
- 4. Adjust main scale so that zeros of two scales coincide with each other.
- 5. Put a load of 5 or 10 N in the hanger and measure extension.
- 6. Take a set of at least five readings of increasing value of load and then take readings on unloading.
- 7. Check the zeros at no load.
- 8. Calculate the "Young's Modulus of Elasticity (E)" of the material of the Wire.

Observations and Calculations:

Least Count of the scale of apparatus	= mm
Length of wire (L)	= mm
Dia of wire (d)	= mm
Initial Load	= N
X-area of wire (A= $\pi d^2/4$)	= mm ²

	Effective Load-P (N)	Extension-δ <i>l</i>			Ρ/δί	Modulus of Elasticity
No. of Obs.		(mm)			(N/mm)	E=(P /δ <i>l</i>)(L/A)
		Loading	Unloading	Average	From Graph	(N/m ²)
1.						
2.						
3.						
4.						
5.						
6.						
7.						

Name: _____

Reg. #_____

Date:

Report:

The laboratory report should contain the following:

- 1. Plot of curve between Load **P** (Y-axis) and Extension δl (X-axis) as shown in figure (b). Calculate the slope of the graph.
- 2. Hand calculations showing all results in (8) under procedure above.
- 3. A discussion / comments of factors affecting the results of the experiment.
- 4. Practical Applications