<u>Department of Mechanical, Mechatronics & Manufacturing Engineering,</u> <u>University City Campus (KSK), UET Lahore.</u>

Subject:	Mechanics of Materials-I	End Term Exam KEY
Time Allowed: 2 hours	Max. Marks: 40	Session 2008
Name:	Reg.# 2008-EP	Date: 09-01-2010

Note: Attempt all questions. E = 200 GPa For Steel.

1 (a) Determine moment of Inertia (I_y) along Y-Axis for the area shown in Fig (1a).

The X-section can be considered as three composite rectangular areas A, B & D as shown

1 (b) If the magnitude of the couples required to bend the steel strip is 4.32×10^{-3} N. m into a circle of 20 mm diameter without resulting permanent deformation, then find the width "w" of the strip as shown in **Fig. (1b)**.

DATA:

 $M = 4.32* 10^{-3} \text{ N.m}$ d = 20 mm = 20 * 10⁻³ m OR r = 10 * 10⁻³ m w =? h = 0.12 mm OR 0.12 * 10⁻³ m From Appendix: For steel E = 200 GPa. Solution: Flexure formula: M / I = E / r ------ (1) Since, I = wh³ / 12

(1) \Rightarrow 12M / wh³ = E / r \Rightarrow 12M r / E h³ = w \Rightarrow w = 12 *4.32* 10⁻³ N.m *10 * 10⁻³ m / 200 GPa * (0.12 * 10⁻³ m)³ \Rightarrow w = 0.15 m Ans.

<u>Department of Mechanical, Mechatronics & Manufacturing Engineering,</u> <u>University City Campus (KSK), UET Lahore.</u>

2 (a) from the table in appendix the column's Area = A= 5890 mm², $I_x = 45.5 \times 10^{6} mm^{4}$, $I_y = 15.3 \times 10^{6} mm^{4}$ By inspection buckling will occur about Y – Axis. So, $P_{cr} = \pi^2 EI / (ZL)^2 = 1887.6 KN$ Now, $\sigma_{cr} = P_{cr} / A = 320.5 MPa$. Since this stress exceeds the yield stress of steel (250 MPa), the load P is determined from simple compression.

250 MPa = P / 5890 mm² → P = 1472.5 KN. Ans.

- 2 (b) Flexure Rigidity = E I = 80×10^{9} N-mm² = $80 \times 10^{9} \times (10^{-3})^{2}$ N-m² Y = 5 WL⁴ / 384 E I = $5 \times 2 \times 4^{4}$ / 384 $\times 80 \times 10^{9} (10^{-3})^{2}$ = 83.3 $\times 10^{-3}$ m Derivation: AS in Class.
- Q#3 Draw shear force & bending moment diagrams for the beam shown in Fig. (3) & locate the point of maximum bending moment.

 Q#4 (a) Derive the relation for crippling load using Euler's Theorem of Columns. Assuming that the column is pinned connected at its ends.
(b)Define: Perpendicular axis theorem, Bifurcation point, Section modulus & Deflection of beam.

AS IN CLASS LECTURE.