Department of Mechanical, Mechatronics \& Manufacturing Engineering,

University City Campus (KSK), UET Lahore.

Subject:	Mechanics of Materials-I	End Term Exam KEY
Time Allowed: $\mathbf{2}$ hours	Max. Marks: 40	Session 2008
Name:	Reg.\# 2008-EP-	Date: 09-01-2010

Note: Attempt all questions. $\mathbf{E}=\mathbf{2 0 0}$ GPa For Steel.
1 (a) Determine moment of Inertia (I_{y}) along Y-Axis for the area shown in Fig (1a).
The X-section can be considered as three composite rectangular areas A, B \& D as shown

Rectangle A \& D:
$\mathbf{I}_{\mathbf{y}}=\frac{1}{12}(300 \mathrm{~mm})(100 \mathrm{~mm})^{3}+(100 \mathrm{~mm})(300 \mathrm{~mm})(250 \mathrm{~mm})^{2}$
$=1.90 * 10^{9} \mathrm{~mm}^{4}$
Rectangle B :
$\mathbf{I}_{\mathbf{y}}=\frac{1}{12}(100 \mathrm{~mm})(600 \mathrm{~mm})^{3}$
$=1.80 * 10{ }^{9} \mathrm{~mm}^{4}$
so,

$$
\begin{aligned}
I_{y} & =1.90\left(10^{9}\right)+1.80\left(10^{9}\right)+1.90\left(10^{9}\right) \\
& =5.60\left(10^{9}\right) \mathrm{mm}^{4} \quad \text { Ans. }
\end{aligned}
$$

$\mathbf{1}$ (b)If the magnitude of the couples required to bend the steel strip is $4.32 * 10^{-3} \mathrm{~N} . \mathrm{m}$ into a circle of 20 mm diameter without resulting permanent deformation, then find the width " w " of the strip as shown in Fig. (1b).
DATA:
$\mathrm{M}=4.32 * 10^{-3} \mathrm{~N} . \mathrm{m}$
$\mathrm{d}=20 \mathrm{~mm}=20 * 10^{-3} \mathrm{~m}$ OR r $=10 * 10^{-3} \mathrm{~m}$
$\mathrm{w}=$?
$\mathrm{h}=0.12 \mathrm{~mm}$ OR $0.12 * 10^{-3} \mathrm{~m}$
From Appendix: \quad For steel $\mathrm{E}=200 \mathrm{GPa}$.

Solution:

Flexure formula: $\quad \mathrm{M} / \mathrm{I}=\mathrm{E} / \mathrm{r}$ Since, $I=w h^{3} / 12$

0.12 mm

10 mm

$$
\begin{align*}
(1) \rightarrow & 12 \mathrm{M} / \mathrm{wh}^{3}=\mathrm{E} / \mathrm{r} \tag{lb}\\
& \rightarrow 12 \mathrm{Mr} / \mathrm{E} \mathrm{~h}^{3}=\mathrm{w} \\
& \rightarrow \mathrm{w}=12 * 4.32 * 10^{-3} \mathrm{~N} . \mathrm{m} * 10 * 10^{-3} \mathrm{~m} / 200 \mathrm{GPa} *\left(0.12 * 10^{-3} \mathrm{~m}\right)^{3} \\
& \rightarrow \mathrm{w}=\mathbf{0 . 1 5} \mathbf{~ m} \text { Ans. }
\end{align*}
$$

2 (a) from the table in appendix the column's
Area $=A=5890 \mathrm{~mm}^{2}, I_{x}=45.5 * 10^{6} \mathrm{~mm}^{4}, \mathrm{I}_{\mathrm{y}}=15.3^{*} 10^{6} \mathrm{~mm}^{4}$
By inspection buckling will occur about Y - Axis.
So, $P_{c r}=\pi^{2} \mathrm{El} /(\mathrm{ZL})^{2}=1887.6 \mathrm{KN}$
Now, $\sigma_{c r}=P_{c r} / A=320.5 \mathrm{MPa}$.
Since this stress exceeds the yield stress of steel (250 MPa), the load P is determined from simple compression.
$250 \mathrm{MPa}=\mathrm{P} / 5890 \mathrm{~mm}^{2}$
$\rightarrow \mathbf{P}=\mathbf{1 4 7 2 . 5} \mathrm{KN}$. Ans.
2 (b) Flexure Rigidity $=\mathrm{E} \mathrm{I}=80 * 10^{9} \mathrm{~N}-\mathrm{mm}^{2}=80 * 10^{9} *\left(10^{-3}\right)^{2} \mathrm{~N}-\mathrm{m}^{2}$
$\mathrm{Y}=5 \mathrm{WL}^{4} / 384 \mathrm{E} \mathrm{I}=5 * 2 * 4^{4} / 384 * 80 * 10^{9}\left(10^{-3}\right)^{2}=\mathbf{8 3 . 3} * \mathbf{1 0}^{-\mathbf{3}} \mathbf{m}$
Derivation:
AS in Class.
Q\#3 Draw shear force \& bending moment diagrams for the beam shown in Fig. (3) \& locate the point of maximum bending moment.

(a)

30 kN

Q\#4 (a) Derive the relation for crippling load using Euler's Theorem of Columns. Assuming that the column is pinned connected at its ends.
(b)Define: Perpendicular axis theorem, Bifurcation point, Section modulus \& Deflection of beam.

AS IN CLASS LECTURE.

